Wednesday, December 23, 2009

Uranium Is So Last Century — Enter Thorium, the New Green Nuke

Wired had an interesting article Uranium Is So Last Century — Enter Thorium, the New Green Nuke.

"Today, however, Sorensen spearheads a cadre of outsiders dedicated to sparking a thorium revival. When he’s not at his day job as an aerospace engineer at Marshall Space Flight Center in Huntsville, Alabama — or wrapping up the master’s in nuclear engineering he is soon to earn from the University of Tennessee — he runs a popular blog called Energy From Thorium. A community of engineers, amateur nuclear power geeks, and researchers has gathered around the site’s forum, ardently discussing the future of thorium. The site even links to PDFs of the Oak Ridge archives, which Sorensen helped get scanned. Energy From Thorium has become a sort of open source project aimed at resurrecting long-lost energy technology using modern techniques."

"When he took over as head of Oak Ridge in 1955, Alvin Weinberg realized that thorium by itself could start to solve these problems. It’s abundant — the US has at least 175,000 tons of the stuff — and doesn’t require costly processing. It is also extraordinarily efficient as a nuclear fuel. As it decays in a reactor core, its byproducts produce more neutrons per collision than conventional fuel. The more neutrons per collision, the more energy generated, the less total fuel consumed, and the less radioactive nastiness left behind.

Even better, Weinberg realized that you could use thorium in an entirely new kind of reactor, one that would have zero risk of meltdown. The design is based on the lab’s finding that thorium dissolves in hot liquid fluoride salts. This fission soup is poured into tubes in the core of the reactor, where the nuclear chain reaction — the billiard balls colliding — happens. The system makes the reactor self-regulating: When the soup gets too hot it expands and flows out of the tubes — slowing fission and eliminating the possibility of another Chernobyl. Any actinide can work in this method, but thorium is particularly well suited because it is so efficient at the high temperatures at which fission occurs in the soup."

No comments: